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SUMMARY. We show how a recently developed wavelet packet modelling methodol-
ogy could be useful for infant sleep state classification using heart rate data. The suggested
approach produces adequate classification rates when applied to recordings taken at dif-
ferent ages from an infant who was put to bed at night. As well as classification, this
approach gives us valuable information about the relationship between sleep state and
heart rate. The statistical model tells us which sorts of wavelet packets of heart rate are

most important for classifying sleep state.
1. Introduction

This article concentrates on the interesting medical problem of infant
sleep state classification using heart rate data. It utilises the recent method-
ology of Nason and Sapatinas (2002) which advocates the non-decimated
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wavelet packet transform (NWPT) to model a response time series in terms
of a (possibly) non-stationary explanatory time series. It is assumed that
both time series have the same finite length. The suggested computational
technique transforms the explanatory time series into a NWPT represen-
tation resulting in a situation having more “variables” than observations.
Then, statistical variable selection techniques are sought to identify which
wavelet packets (variables) are useful for modelling the response time series.
The selected statistical model usually provides valuable information about
which components in the explanatory time series drive the response time
series.

The article is organised as follows: Section 2 provides a detailed history
of the medical problem studied here and describes the actual data set used in
our analysis. In Section 3, we give a brief description of (discrete) wavelets
and wavelet packets and a brief explanation of the wavelet packet modelling
methodology of Nason and Sapatinas (2002). In Section 4, we show how
the NWPT representation of heart rate data (the explanatory time series)
could be useful for infant sleep state (the response time series) classifica-
tion. In particular, a non-sophisticated variable selection technique is first
adapted to tackle the problem of having more variables than observations.
This step, although somewhat rough and ready, is computationally fast and
provides an adequate initial dimension reduction prior to the exploration
of standard statistical classification techniques. Furthermore, a linear dis-
criminant analysis on the selected variables (non-decimated wavelet packets)
produces adequate sleep state classification rates when applied to recordings
at different ages from an infant who was put to bed at night. As well as clas-
sification, this approach gives us valuable information about the relationship
between sleep state and heart rate. The statistical model tells us which sorts
of wavelet packets of heart rate are most important for classifying sleep state.
Moreover, to evaluate the success rates obtained with the above approach,
the antedependence modelling methodology of Krzanowski et al. (1995) was
adapted. This, more sophisticated and computational demanding, approach
has been recently developed to perform discrimination when the number of
variables is larger than the number of observations. It is shown that the first
and second order antedependence models also produce adequate sleep state
classification rates and improve on the ones obtained (on the same infant)
by combining the rough variable selection technique with linear discriminant
analysis. Some concluding remarks are made in Section 5.
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2.  Background Material and the Data set

In this section, we give a detailed account on the history of the medical
problem and describe the actual data set used in our analysis.

2.1. The history of the problem. Sleeping and waking states are ubiqui-
tous behavioural characteristics already present during fetal life which con-
tinue to develop during post-natal life. During adulthood, sleep consists of
two distinct types which alternate within a 90 minute cycle. If awoken dur-
ing periods associated with rapid eye movements (REM sleep) volunteers re-
ported vivid dreams but not during other periods of sleep, which are labelled
as non-rapid eye movements (non-REM sleep) (see Dement and Kleitman,
1957). There are major physiological changes between “awake” and “sleep”
but also within sleep between REM and non-REM.

During infancy, the terms ACTIVE SLEEP and QUIET SLEEP are used
in an analagous manner to REM and non-REM sleep (see Anders et al.,
1971). The different terminology emphasises that infancy is a dynamic pe-
riod characterised by rapid growth, development and maturity. Whilst the
physiological patterns observed during ACTIVE SLEEP and QUIET SLEEP are
similar to the adult equivalents, they are different and change with increas-
ing age: thus physiological recordings made during ACTIVE SLEEP in the first
month are not the same as those made at four months of age. The newborn
spends the majority of its time sleeping but the awake periods lengthen and
coalesce towards the day-time. Initially sleep is characterised by long peri-
ods of ACTIVE SLEEP interspaced with shorter periods of QUIET SLEEP but
the periods of QUIET SLEEP lengthen, whilst the duration of ACTIVE SLEEP
periods either shorten or remain the same. The infant thus develops an
approximate 50-60 minute sleep cycle consisting of alternate 20-30 minute
periods of ACTIVE SLEEP and QUIET SLEEP. Other body systems also ma-
ture and change during this period. For example infants have faster heart
rates and breathing rates than adults but the rates decrease with increasing
age reflecting not only growth in the heart and lungs but also maturity in
the overall controlling systems sited within the developing brain (see Harper
et al., 1976; Schechtman et al., 1993).

ACTIVE SLEEP is recognised by uneven respiration and sporadic body
movements but with low muscle tone in between these movements. This
reduced tone can lead to partial collapse of the upper airway and snor-
ing, or even complete cessation of air flow (apnea). Rapid eye movements,
smiles, frowns, grimaces, mouthing, sucking, sighs, and twitches are frequent
and are associated with increased variability in heart rate. QUIET SLEEP is
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characterised by slow regular respiration, less variability in heart rate, an
increased muscle tone and fewer movements. A major difficulty in any clas-
sification system is that individual infants do not show all these criteria
all the time. Conventionally, sleep states are characterised primarily using
electrophysiological measurements which involves the attachment of EEG
(electro-encephalogram — “brain-waves”) and EOG (electro-oculogram —
eye movements) sensors. Sleep state is manually determined the next day
by a trained observer visually interpreting predetermined time periods (eg
each 30 second period) of the infant’s EEG and EOG that had been con-
currently recorded (see Anders et al., 1971). Whilst this is an accurate and
reproducible method of sleep state analysis (about 80% inter-observer agree-
ment) the determination is time-consuming, laborious and expensive. The
attachment of the recording sensors to the infants scalp (EEG) and face
(EOG) may be distressing to both parents and infants, may lead to artifacts
by interfering with the infants sleep, and is not practicable in the home en-
vironment. Thus such recordings must be performed in the hospital which
further adds to cost and potential distress. By comparison, heart rate is au-
tomatically measured using standard commercial ECG (electro-cardiogram)
monitors. The ECG recording is relatively unobtrusive, since the leads are
attached to the infants chest and parents can be readily taught to do this.
Moreover, it is cheap to measure heart rate directly.

2.2. The data set. Sawzenko et al. (1995) have recently completed a
prospective study of nocturnal infant physiology in a sleep laboratory de-
signed to be similar to a normal domestic bedroom. Five mothers and their
healthy first-born infants slept in a thermally controlled room each month
for the first 5 months. Conventional polsomnography including one chan-
nel of EEG and EOG, chest and abdominal movement and ECG (Oxcams,
Oxford Ltd) as well as multiple temperature measusements (Squirrel 1200,
Cambrige instruments Ltd) and infra-red video recordings were made. In the
studies reported here all infants slept supine in a cot besides their mother,
but mothers were free to care for their infants as they would at home (eg.
feed, change nappy, etc) whilst recording continued to take place. Most stud-
ies commenced around 20:00-21:00 and finished around 08:00-09:00. Sleep
staging was performed off line (see Stefanski et al., 1984) and state was as-
signed to consecutive 30 second blocks of averaged heart rate. Three sleep
states were recorded: AWAKE, ACTIVE SLEEP and QUIET SLEEP, and two
consecutive minutes were needed for a transition to be recorded.

To simplify our analysis, we combined ACTIVE SLEEP and QUIET SLEEP
into one category (called ASLEEP) and, thus, have concentrated on two sleep-
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ing states (AWAKE and ASLEEP). We have also considered recordings at dif-
ferent ages only from one infant who was put to bed at night. Figure 1 shows
a segment of two time series recorded from a four month old infant who was
placed to bed at night.
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Figure 1. Time series of heart rate and sleep state for a four month old baby beginning
at 23:09:42. (Heart rate is labelled by the left-hand axis. Sleep state is labelled by the
right-hand axis and takes only two states: ASLEEP and AWAKE.)

The time series shown are of heart rate and sleep state (i.e. whether the
infant was AWAKE or ASLEEP) sampled every 30 seconds. After about 1.5
hours the infant eventually fell ASLEEP only to wake around half an hour
later. Figure 1 shows that the heart rate is low when the baby is ASLEEP
and high when it is AWAKE. It seems that the mean level of heart rate
over certain time scales is likely to be important for determining sleep state.
From the above a method which can reliably predict sleep state from heart
rate would therefore be clinically valuable.

3. The Non-decimated Wavelet Packet Modelling Methodology

In this section, we give a brief description of (discrete) wavelets and
wavelet packets and a brief explanation of the wavelet packet modelling
methodology of Nason and Sapatinas (2002).
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3.1. (Discrete) Wavelets and wavelet packets. Daubechies (1992) and
Hess-Nielsen and Wickerhauser (1996) give excellent descriptions of wavelets
and wavelet packets respectively, and explain how they reveal information
about the variation of signals in time and frequency. A comprehensive de-
scription of wavelets and wavelet packets is beyond the scope (and length)
of the present paper. To get an overview of the methodology it is, however,
enough to know that

e wavelets form a set of oscillatory basis functions that can be used
to efficiently represent functions of interest (this set is usually constructed
by dilating and translating a single mother wavelet function enjoying nice
mathematical properties, such as compact support, high regularity and a
number of vanishing moments);

e wavelet packets form a large “library” of oscillatory basis functions of

which wavelets are a subset (these basis functions inherit nice mathematical
properties from their generating wavelet basis functions). For any particular
application, the “best basis” can be chosen from the library of oscillatory
basis functions according to some user-defined criterion function (like the
Shannon entropy measure which defines a “best basis” to be one which
represents functions sparsely).

We give a few examples of the types of functions that we are referring
to. For example, the Haar mother wavelet in continuous time is given by
the function

1/vV2 if t€(0,3)
P(t)={ —1/V2 if te (1)

0 otherwise.

The wavelets are all scaled and shifted versions of the mother wavelet. For
example, the wavelet at scale 7 and location 277k is given by

bik(t) = 20729 (20t — k).

Wavelet coefficients at scale j and location 277k are found by forming the
inner product of f with ;. Wavelets in discrete time can be formed from
the continuous ones. For example, the Haar mother wavelet in discrete
time is given by the vector (1/v/2,—1/v/2), at the next coarser scale by
(1/2,1/2,—-1/2,—1/2), and so on. For more information about discrete
wavelets see Nason et al. (2000). In particular the formula definition for
discrete wavelets, ¢, for j > 0 and & =0,...,N; — 1, is given by

in = Zgn—2k50k = 9n
k
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and

Gitin =D hn 2Pk, (1)
k

where N; = (27 — 1)(Ny, — 1) + 1 and gg, hy, are the quadrature mirror filters
of Daubechies’ (1992) compactly supported wavelets of length Np,.

Wavelets are all obtained from simple scalings (by factors of 2) and trans-
lations 277k of one mother function. The frequency response of the mother
wavelet is a local bandpass filter and the frequency response of wavelets at
other scales j bandpasses a signal at different octaves. The time-locality of
the wavelet filter is controlled by k. So for example, the Littlewood-Paley or
Shannon wavelet is defined in the Fourier domain to be (see Daubechies 1992,
p 115)

) = { (27)" Y2 for we (m,7/2)
0 elsewhere.

The finest scale Littlewood-Paley wavelet coefficients correspond to an exact
bandpass filtering in the frequency range (7/2, ) (highest frequency band),
the next finest scale to an exact bandpass filter at (7/4,7/2), and so on.

As one can see wavelets do not necessarily provide good frequency res-
olution at some scales: wavelet packets were introducted partly to correct
this deficiency. For example, a resolution of, say, (37 /4, ) could be achieved
with a wavelet packet. Alternatively, algorithmically discrete wavelet pack-
ets could be formed by replacing h,_or by gn_or in (1) and, for example,
producing a discrete wavelet packet such as (1/2,—1/2,1/2,—1/2) which is
clearly not derived from the Haar mother wavelet by a simple scaling or
translation as it contains two complete oscillations and not one. In fact,
wavelet packets can be indexed by scale, location and additionally num-
ber of oscillations; in a sense they provide a well-spaced cover of functions
spanning the time-frequency plane.

“Non-decimated wavelets” or “wavelet packets” means that the func-
tions can be placed at any location. In the standard decimated transform,
wavelets/wavelet packets are restricted to lie at dyadic locations depending
on their scale (we mentioned above that ¢, was located at 277k). For non-
decimated continuous wavelets, ;) is located at 277k, i.e. independent of
j (but dependent on the finest scale of the observed data points J). For
discrete wavelets, non-decimation means that ¢, can lie at any time point
t,ie. ir(t) = Pk

For the modelling described in Section 3.2 we compute the wavelet packet
coefficients by filtering the time series in question with the appropriate
wavelet packet function. In other words we are forming combinations of
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the explanatory time series such as:
wit = (X, - X, 1) /V2
for the finest scale Haar wavelet,
W = (X + Xio1 — Xiog — X4_4)/2
for the next coarsest scale Haar wavelet, and
W = (X, — Xio1 + Xims — Xi_4)/2

for the wavelet packet mentioned above. This filtering is done recursively
with an extension of the discrete wavelet transform algorithm (see Mallat,
1989), compared with a direct calculation of all the filtered series, very fast.

For details on the computational algorithms associated with wavelets and
wavelet packets we refer, for example, to Nason and Sapatinas (2002). For
recent surveys on the use of wavelets (mainly) and wavelet packets in statis-
tics, time series and related subjects we refer, for example, to Antoniadis
(1997), Nason and von Sachs (1999), Vidakovic (1999), Abramovich et al.
(2000), Percival and Walden (2000) and Antoniadis et al. (2001).

A note on classification with wavelets and wavelet packets: Wavelet and
wavelet packet methods have been recently used in classification problems
following the standard “training-predicting” paradigm (see, for example,
Coifman and Saito, 1994; Learned and Willsky, 1995). The next section,
however, briefly describes the modelling methodology of Nason and Sapati-
nas (2002) that is of a somewhat different type as models are built in situ
rather than have a large set of training samples.

3.2. Statistical model building using non-decimated wavelet packets. The
basic statistical modelling idea is very simple. Rather than build a statisti-
cal model directly between a response time series Y; = (Y1,...,Yr) and an
explanatory time series X; = (Xq,..., X7)’, for some fixed integer T' > 0,
Nason and Sapatinas (2002) proposed to build a model between Y; and a
NWPT version of X;. The NWPT representation of X; generates K = 27T —2
derived time series (wavelet packets), each one having T observations. We
can subsequently model Y; in terms of the matrix W = (X4, ..., Xp)’, where
X; is K-dimensional and each dimension corresponds to a particular wavelet
basis function. Each variable of X; quantifies how similar X; is to a partic-
ular wavelet packet at time ¢. In other words each component of X; tells
us “how much” of each wavelet packet there is in X; at any particular time
t. The decomposition of X; into K different wavelet packet components is
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extremely useful since we can subsequently model Y; in terms of the com-
ponents using standard statistical methodology. To summarize: X; is the
“explanatory” time series and Xy is the “collection of NWPT coefficients”
of X;. We refer to Nason and Sapatinas (2002) for the modelling advantages
of using non-decimated wavelet packets against (decimated) wavelets and/or
wavelet packets, and for an S-Plus function from the freeware WaveThresh
package that implements the NWPT.

The number of variables (K = 2T —2) generated by the NWPT is always
larger than the number of observations (7). Hence, the problem of having
more variables than observations arises, as many standard statistical tech-
niques require K < T. In the infant sleep state classification problem (see
Section 4), however, we have tackled the problem of having more variables
than observations by considering the following two strategies.

1. First, we consider what we call the “naive” method. This approach
selects an arbitrary number of variables, say K; < T, which correlate best
with Y;. Although this step is somewhat rough and ready, it is compu-
tationally fast and provides an adequate initial dimension reduction. The
variables that exhibit the largest K correlations then form the working set.
Then standard statistical techniques can be used to build a model between
Y, and the working set variables.

2. Secondly, we consider the antedependence modelling method. The
antedependence models were introduced by Gabriel (1962) as a nested series
of models suitable for handling data that are serially correlated (and exhibit
the general features of a non-stationary time series) and used by Kenward
(1987) in the analysis of repeated measurements. A set of p ordered vari-
ables is said to have an antedependence structure of order r if the sth variable
(1 > r), given the preceding r, is independent of all further preceding vari-
ables. Complete independence (r = 0) and general dependence (r = p — 1)
are special cases of this structure. Under the antedependence structure of
order r, the inverse of the variance-covariance matrix has non-zero elements
only on the leading diagonal and on the r diagonals immediately above and
immediately below it. The antedependence models were recently developed
by Krzanowski et al. (1995) in the discriminant context to circumvent the
problem of singular variance-covariance matrices (when the number of vari-
ables is larger than the number of observations) and successfully applied to
spectroscopic data.
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4. Infant Sleep-state Classification

This section applies the statistical modelling methodology explained in
Section 3.2 to sleep state and heart rate recordings at different stages of
development from an infant who was put to bed at night. For computational
reasons, we mainly used segments of length 7" = 128 but longer segments of
T = 512 were subsequently used.

We start our analysis by considering the medical example described in
Section 2.2 and shown in Figure 1. Recall that this example concerns sleep
states (Y;) and heart rates (X;) for a four month old infant. We transform X,
with the NWPT using Daubechies’ (1992) extremal-phase mother wavelet
with 10 vanishing moments and form the matrix W = (X4, ..., Xy)". (There
are no hard rules about the choice of the mother wavelet — however a choice
has to be made.) The matrix consists of 7" = 128 observations on K = 254
variables. Since we have more variables than observations we first reduce the
dimensionality of the variables small enough so that we can subsequently use
standard statistical classification techniques. We apply the “naive” approach
mentioned in Section 3.2 to select a subset K; = 13 (the “best” 5%) of the
K = 254 variables. The resulting “top five” variables were labelled by
S1,...,55 and identified in Table 1 along with their correlations.

Table 1. RESOLUTION LEVELS AND FREQUENCY INDICES OF THE “TOP
FIVE” (NON-DECIMATED) WAVELET PACKETS THAT WERE IDENTIFIED
AS BEING IMPORTANT FOR RELATING Y; TO X;. THE “CORRELATION”
COLUMN SHOWS THE CORRELATION BETWEEN Y; AND THE PARTICULAR
WAVELET PACKET COEFFICIENTS.

Wavelet packet
Packet ID  Resolution level j  Frequency index  Correlation with Y;

S1 4 0 0.92
52 5 0 0.89
S3 3 0 0.89
S4 6 0 0.89
Sbh 1 0 0.79

Note that the best variables discovered by the “naive” variable selec-
tion strategy all have frequency index 0 (indeed, the next best, not shown
here, also has frequency index 0 at resolution level 2). The wavelet packets
at frequency index 0 are father wavelets which resemble statistical kernel
functions. This can be easily seen in Figure 2 which shows the three father
wavelets corresponding to resolution levels of 3 (53), 4 (S1) and 5 (52).

The appearance of the father wavelets suggests that averaging over res-
olution levels 1 (2(7-Y) = 64 minutes, coarsest) to 6 (2(7=6) = 2 minutes,
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finest) in the immediate past is important for determining sleep state. This
corresponds with the observation earlier than the level of the heart rate over
these scales is an important determining factor. The prospects for real-time
prediction (on-line) are probably not as good as the father wavelets average
a short time into the future as well — e.g. S1 requires about 6 minutes, S2
about 2.5 minutes and S$3 about 11 minutes.

0.4

0.2

Basis function

0.0

-0.2

32 26 -20 -14 9 -4 0 3 6 9 13 18 23 28
Minutes
Figure 2. The top three wavelet packets for classifying the baby sleep state from heart
rate. The figure shows Daubechies’ (1992) extremal phase father wavelets with 10 vanishing
moments at resolution levels 4 (51, solid line), 5 (S2, dotted line), and 3 (53, dashed line).
The vertical line shows current time ¢. (Only three are shown for clarity.)

The top five variables (S1,...,S5) could be then used as an input in vari-
ous standard statistical techniques to identify which wavelet packets are use-
ful for modelling the sleep state. In all we experimented with three statistical
modelling methods: linear discriminant analysis (LDA), logistic regression,
and classification and regression trees. Of these three methods LDA working
on the log-transformed absolute values of coefficients was most successful and
is described here. The log transform is of use when local oscillatory power
is thought to be important in driving the response time series. Taking the
log of the absolute values is like squaring and then taking logs which is
analogous to forming the log-periodogram in classical stationary time series
analysis. For instance, in our infant sleep state classification problem, it is
the power of oscillation itself that is related to changes of sleep state. Using
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power-based statistics is a standard signal processing manoeuvre (see, for
example, Learned and Willsky, 1995); Nason et al. (2000) also advocate the
use of power-based wavelet coefficients in local time-scale modelling.

The LDA analysis determines which linear combinations are best for
discrimination. The best linear combination turned out to be

12 S1—0.78 S2 — 0.37 S3 4+ 4.5 S4 — 2.5 S5. (2)

Thus, for this data set, S1 is very influential and corresponds to averaging
over periods of about 10 minutes (looking at the solid curve in Figure 2).
Interestingly enough, this period of oscillation was found in analyses carried
out earlier by Stoffer (1991) to be present in infants unexposed to maternal
alcohol. Although here we are saying that the 10 minute cycle is important
for linking heart rate and sleep state. The analysis made by Stoffer (1991)
identifies a 9 minute cycle in spectral analysis of just sleep state.

4.1. Prediction and evaluation. We took the next 128 heart rate values,
performed the NWPT analysis, extracted the same

Second discriminant axis
2938 2940 2942 2944
| | |

2936
|

2934

-60 -58 -56 -54 -52

First discriminant axis

Figure 3. NWPT values from the new heart rate time series projected
onto first and second linear discriminant axes. The label of each point
shows its true group membership. The vertical dashed line shows the
discriminant rule: observations to the left are assigned to the ASLEEP
group (0), those to the right are assigned to the AWAKE group (1). The
13 misclassified observations appear in the top-left of the plot. The MO0
and M1 labels refer to the means of the ASLEEP and AWAKE groups used
to build the discriminant model.
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top five variables and used the linear combinations determined by the LDA
in (2) to predict the sleep state for the next 128 time periods (additionally,
the mean of the next 128 heart rate values was adjusted to be the same as
the previous 128 values to prevent this affecting of the analysis as it adds no
discriminatory value). Figure 3 shows the new NWPT values projected onto
the first two discriminant axes, the location of the discriminant rule and 13
misclassified observations.

With this classification we achieved a 90% overall success rate (13 ob-
servations misclassified the infant to be ASLEEP when it was really AWAKE).
Figure 4 shows the new heart rate series with the true and predicted heart
rate. Our method wrongly showed that the baby has gone to sleep just after
2.4 hours, probably by the sharp drop in heart rate. Likewise, just around
3.1 hours our method is a bit slow in noticing that the baby woke up, but
the delay in noticing is 2 minutes. However, the true record does note that
during this period the human judge was uncertain about the true sleep state.

130 —
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110 —

Heart rate (beats per minute)

100 — 3 ; Asleep
T T

2.4 2‘.6 218 3.‘0 3.2 3.‘4
Time since baby was put to bed (hours)

Figure 4. New heart rate series with true sleep state (solid)
and predicted sleep state (dashed).

Furthermore, we evaluate the classification performance by building mod-
els at various time-intervals during a particular night and also on recordings
at different stages of the infant’s life. As infants mature their EEG and EOG
become easier to classify and conventionally determined sleep state becomes
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more accurate with less disagreement between observers. This was reflected
by our LDA models which became better at predicting. Table 2 shows suc-
cess (interval) rates for the infant at different stages of development and
suggests that better classification may be possible with the older infant.

Table 2. SUCCESS (INTERVAL) RATES OF INFANT SLEEP STATE WITH
INCREASING AGE WITH OUR METHOD

Infant Age (Months) 2 3 4 5
Success Rate 75-78%  75-80%  80-90%  82-90%

The LDA and Figure 3 would appear to be “inappropriate” because of the
highly correlated nature of the data. As an alternative, we now use the first
(r = 1) and second (r = 2) order antedependence models from Krzanowski
et al. (1995) mentioned in Section 3.2 to build discriminatory models for the
infant sleep state. These models, obviously, result in an off-line classification
since some of the wavelet packets average a short time into the future as
well. Although more sophisticated, these models are computationally more
demanding. Furthermore, they cannot be used directly to identify which
wavelet packets are useful for modelling the sleep state and, therefore, we
cannot easily attach physical and scientific interpretations to the selected
models. However, these models, by construction, are suitable for data that
are serially correlated and exhibit the general features of a non-stationary
time series. Moreover, they serve as a basis for evaluating the success rates
obtained when the “naive” variable selection was considered and LDA was
subsequently used for infant sleep state classification.

To evaluate the effect of the length T' also, we now consider longer seg-
ments of length T' = 512. In this case, the NWPT representation results in
K = 1022 variables. Table 3 shows the leave-one-out cross-validated suc-
cess rates for the infant at different stages of development and suggests that
this approach improves on the classification rates obtained earlier with the
“naive” method. Tt also suggests that better classification may be possible
with the older infant; a view that concurs with the one drawn using the
“naive” method.

It could be argued that the leave-one-out cross-validation might not be
very appropriate for evaluating the classification performance, since future
values are also been used to predict the past. However, when the first and
second order antedependence models were built on the segment shown in
Figure 1 and their classification performance were subsequently evaluated
on the time series given in Figure 3, similar conclusions were drawn. This is
also true, although not reproduced here, when we evaluated the classifica-
tion performance of the first and second antedependence models by building
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classifiers at various time-intervals and throughout different stages of the in-
fant’s life. Moreover, a limited comparison of one step ahead predicted with
one step ahead observed values (which is more appropriate for time series
data) produces similar results, although a more detailed analysis should be
made to draw definite conclusions.

Table 3. CROSS-VALIDATED CLASSIFICATION SUCCESS RATES USING AN-
TEDEPENDENCE MODELS OF ORDER 1 (AD1) AND 2 (AD2) FOR AN
INFANT AT DIFFERENT AGES. RATES SHOW HOW ACCURATELY THE CAT-
EGORIES OF ASLEEP AND AWAKE WERE CLASSIFIED AS WELL AS THE
OVERALL CLASSIFICATION SUCCESS RATE. CROSS-VALIDATION WAS PER-
FORMED WITH THE LEAVE-ONE-OUT METHOD OF LACHENBRUCH AND
MIickEY (1968).

Infant Age (Months)  Model Success rate

AsLEEP  AwWAKE  Ouverall

2 AD1 0.89 0.90 0.90

AD2 0.89 0.89 0.89

3 AD1 0.95 0.88 0.94

AD2 0.96 0.88 0.95

4 AD1 0.94 0.86 0.89

AD2 0.95 0.89 0.91

5 AD1 0.97 0.95 0.96

AD2 0.97 0.95 0.96

5. Discussion

This article demonstrates how the recently developed modelling method-
ology of Nason and Sapatinas (2002) could be useful for infant sleep state
classification using the non-decimated wavelet packet transform of heart rate
data. Although we have had some success in classifying sleep state by build-
ing a model in various times of a night and predicting what the sleep state
is in later periods, it may not be possible to transfer the exact model to
the same infant at different ages. However, the same father wavelets nearly
always recur in the best model suggesting that averaging over certain time-
scales is important. Only the coefficients in the sleep state/heart rate model
differ across nights. We however noticed that more complex wavelets did
not seem important to the sleep state classification.

In our analysis we have, concentrated on two sleeping states (ASLEEP,
AWAKE). As discussed in Section 2, in the literature attention was focussed
on further subdividing ASLEEP into ACTIVE SLEEP and QUIET SLEEP dur-
ing which dreaming and many upper airway breathing disorders occur (see



214 G.P. NASON, T. SAPATINAS AND A. SAWCZENKO

DeHann et al., 1977; Schechtman et al., 1988). For example, Harper et al.
(1987) modified the technique of Welch and Richardson (1973) and devel-
oped an off-line system based on cardiac (4 variables from heart rate) and
respiratory (3 variables from respiration) measures. They quote success rates
of 85% using all 7 variables, 82% for the 4 cardiac variables, and 80% for
the 3 respiratory variables.

We stress, however, that a more detailed sleep state categorization could
be undertaken, if necessary, when the non-decimated wavelet packet trans-
form modelling methodology is adopted. This is only a matter of choice
of the statistical classification technique we select. This is not because
we are using wavelet methods. Preliminary analysis, however, has shown
that with more than two sleep states both the “naive” method and the an-
tedependence modelling methodology do not seem to produce satisfactory
results. Therefore, more appropriate statistical analyses are needed once
the non-decimated wavelet packet transform representation of the heart rate
has been built. It might be the case that these approaches could produce
satisfactory classification rates when a more detailed infant sleep state cate-
gorization is considered, and also transfer the exact model to different infants
and at different stages of their lives. Further, a referee has pointed out that
measuring success in terms of mean time to detect a state change might be
a more appropriate measure of success. We agree that this quantity might
be more important in this, and other situations.

We finally mention that overnight infant rectal temperature falls rapidly
around bed-time, reaches a trough and then gradually rises in the early
morning. This fall in rectal temperature becomes greater with increasing
age (see Lodemore et al., 1991); it has recently become apparent that there
are clear variations in infant rectal temperature with sleep state (see Tap-
pin et al., 1996). There is also evidence that disordered thermoregulation
(see Sawczenko and Fleming, 1996) may be responsible for some cases of the
Sudden Infant Death Syndrome (SIDS), which has a peak incidence around 3
months. Two thirds of SIDS now appear to occur during the early morning
i.e. during the rise in rectal temperature (see, Fleming et al., 1996). Whilst
hypothermia or hyperthermia can directly kill it is more likely thermal stress
causes instability in the control of the respiratory system (see Fleming et al.,
1993). A unifying ‘triple risk’ model suggests that SIDS occurs during a criti-
cal developmental period, in vulnerable infants, exposed to exogenous stress.
In a longitudinal series of home studies of rectal temperature infants differed
in the age at which rectal temperature fell; infants at the highest epidemi-
ological risk of SIDS dropped their rectal temperature at an older age (see
Lodemore et al., 1992). Other studies have suggested differences in cardio-
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vascular recordings in infants who later die from SIDS compared to controls
(see Kludge et al., 1988; Schechtman et al., 1992). This work supports the
suggestion that environmental factors, probably including parental actions,
may adversely affect baseline infant physiology. There is thus a need to lon-
gitudinally record, in the home, the parallel and interrelated developmental
patterns of several physiological systems during early infancy.

Obviously, analysis of the above scientific factors could be proved useful
to the sleep state classification. This problem is an interesting topic for
further research and we intend to address it in the future.
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